Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Am J Cancer Res ; 14(4): 1685-1711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726276

RESUMEN

Diabetes mellitus (DM) is recognized as a risk factor for hepatocellular carcinoma (HCC). High glucose levels have been implicated in inducing epithelial-mesenchymal transition (EMT), contributing to the progression of various cancers. However, the molecular crosstalk remains unclear. This study aimed to elucidate the molecular mechanisms linking DM to HCC. Initially, the expression of NCAPD2 in HCC cells and patients was measured. A series of functional in vitro assays to examine the effects of NCAPD2 on the malignant behaviors and EMT of HCC under high glucose conditions were then conducted. Furthermore, the impacts of NCAPD2 knockdown on HCC proliferation and the ß-catenin pathway were investigated in vivo. In addition, bioinformatics methods were performed to analyze the mechanisms and pathways involving NCAPD2, as well as its association with immune infiltration and drug sensitivity. The findings indicated that NCAPD2 was overexpressed in HCC, particularly in patients with DM, and its aberrant upregulation was linked to poor prognosis. In vitro experiments demonstrated that high glucose upregulated NCAPD2 expression, enhancing proliferation, invasion, and EMT, while knockdown of NCAPD2 reversed these effects. In vivo studies suggested that NCAPD2 knockdown might suppress HCC growth via the ß-catenin pathway. Functional enrichment analysis revealed that NCAPD2 was involved in cell cycle regulation and primarily interacted with NCAPG, SMC4, and NCAPH. Additionally, NCAPD2 was positively correlated with EMT and the Wnt/ß-catenin pathway, whereas knockdown of NCAPD2 inhibited the Wnt/ß-catenin pathway. Moreover, NCAPD2 expression was significantly associated with immune cell infiltration, immune checkpoints, and drugs sensitivity. In conclusion, our study identified NCAPD2 as a novel oncogene in HCC and as a potential therapeutic target for HCC patients with DM.

2.
Front Cardiovasc Med ; 11: 1360763, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433755

RESUMEN

Background: The clinical prognosis of mitral valve surgery at morning, afternoon, and evening is not yet clear. The aim of the study is to investigate the impact of different time periods of surgery in the morning, afternoon and evening on the short-term and long-term results of mitral valve surgery. Methods: From January 2018 to December 2020, 947 patients with mitral valve surgery in our department were selected. These patients were divided into 3 groups according to the starting time of surgery. Morning group (operation start time 8:00-10:30, n = 231), afternoon group (operation start time 12:00-14:30, n = 543), and evening group (operation start time 17:30-20:00, n = 173). The short-term and long-term results of the three groups were compared. Results: There were no significant difference in the long-term mortality, long-term risk of stroke and reoperation. And there were no significant difference in in-hospital outcomes, including mortality, stroke, cardiopulmonary bypass time, aortic cross clamp time, mitral valve repair convert to mitral valve replacement, number of aortic cross clamp ≥2 times, unplanned secondary surgery during hospitalization (including thoracotomy hemostasis, thoracotomy exploration, redo mitral valve surgery, and debridement), intra-aortic balloon pump, extracorporeal membrane oxygenation, continuous renal replacement therapy, mechanical ventilation time, and intensive care unit length of stay. Conclusion: There is no significant difference in the risk of short-term and long-term survival and adverse events after mitral valve surgery at different time periods in the morning, afternoon, and evening. Mitral valve surgery at night is safe.

3.
PeerJ Comput Sci ; 10: e1880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435594

RESUMEN

This article presents a hybrid recommender framework for smart medical systems by introducing two methods to improve service level evaluations and doctor recommendations for patients. The first method uses big data techniques and deep learning algorithms to develop a registration review system in medical institutions. This system outperforms conventional evaluation methods, thus achieving higher accuracy. The second method implements the term frequency and inverse document frequency (TF-IDF) algorithm to construct a model based on the patient's symptom vector space, incorporating score weighting, modified cosine similarity, and K-means clustering. Then, the alternating least squares (ALS) matrix decomposition and user collaborative filtering algorithm are applied to calculate patients' predicted scores for doctors and recommend top-performing doctors. Experimental results show significant improvements in metrics called precision and recall rates compared to conventional methods, making the proposed approach a practical solution for department triage and doctor recommendation in medical appointment platforms.

4.
Clin Nutr ; 43(3): 881-891, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38377634

RESUMEN

OBJECTIVE: The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery, and to provide a new nutritional status assessment and survival assessment tool for gastric cancer patients. METHODS: A retrospective analysis of 312 patients of gastric cancer were divided into malnutrition group and normal group based on Nutrition Risk Screening 2002(NRS-2002). 312 regions of interest (ROI) of the psoas muscles at L3 level of non-enhanced CT were delineated. Deep learning (DL) features were extracted from the ROI using a deep migration model and were screened by principal component analysis (PCA) and least-squares operator (LASSO). The clinical predictors included Body Mass Index (BMI), lymphocyte and albumin. Both deep learning model (including deep learning features) and mixed model (including selected deep learning features and selected clinical predictors) were constructed by 11 classifiers. The model was evaluated and selected by calculating receiver operating characteristic (ROC), area under curve (AUC), accuracy, sensitivity and specificity, calibration curve and decision curve analysis (DCA). The Cohen's Kappa coefficient (κ) was using to compare the diagnostic agreement for malnutrition between the mixed model and the GLIM in gastric cancer patients. RESULT: The results of logistics multivariate analysis showed that BMI [OR = 0.569 (95% CI 0.491-0.660)], lymphocyte [OR = 0.638 (95% CI 0.408-0.998)], and albumin [OR = 0.924 (95% CI 0.859-0.994)] were clinically independent malnutrition of gastric cancer predictor(P < 0.05). Among the 11 classifiers, the Multilayer Perceptron (MLP)were selected as the best classifier. The AUC of the training and test sets for deep learning model were 0.806 (95% CI 0.7485-0.8635) and 0.769 (95% CI 0.673-0.863) and with accuracies were 0.734 and 0.766, respectively. The AUC of the training and test sets for the mixed model were 0.909 (95% CI 0.869-0.948) and 0.857 (95% CI 0.782-0.931) and with accuracies of 0.845 and 0.861, respectively. The DCA confirmed the clinical benefit of the both models. The Cohen's Kappa coefficient (κ) was 0.647 (P < 0.001). Diagnostic agreement for malnutrition between the mixed model and GLIM criteria was good. The mixed model was used to calculate the predicted probability of malnutrition in gastric cancer patients, which was divided into high-risk and low-risk groups by median, and the survival analysis showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group (P = 0.005). CONCLUSION: Deep learning based on mixed model may be a potential tool for predicting malnutrition in gastric cancer patients.


Asunto(s)
Benzamidas , Aprendizaje Profundo , Desnutrición , Fenilendiaminas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/complicaciones , Neoplasias Gástricas/diagnóstico por imagen , Estudios Retrospectivos , Desnutrición/diagnóstico , Desnutrición/etiología , Albúminas , Tomografía
5.
Cell Signal ; 116: 111054, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38244710

RESUMEN

Cancer is a devastating disease that presents a major threat to human health. The protein CERS5 is responsible for synthesizing C16-ceramide, but its role in cancer is poorly understood. In this study, we examined the connection between CERS5 expression and pan-cancer prognosis, diagnosis, and the molecular mechanism involved. Kaplan-Meier survival analysis revealed variations among different cancer types. Functional enrichment analysis was conducted using gene set enrichment analysis (GSEA), and a network of protein-protein interaction (PPI) was constructed. The relationship between CERS5 and 22 immune infiltrating cell categories was detected using CIBERSORT. Single-cell analysis revealed elevated CERS5 levels in fibroblasts, which are vital in tumor immunity. The relationship between the expression of CERS5 and the immune-related genes, microsatellite instability, tumor mutational burden, and RNA modification genes in cancer were examined using the pan-cancer database. The role of CERS5 in immune regulation might be crucial to the tumor microenvironment. Pathway enrichment analysis indicated associations between CERS5 and extracellular matrix-receptor interaction, the WNT signaling pathway, and cell-cell junctions. Specifically, CERS5 was positively correlated with Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), Programmed Cell Death 1 (PDCD1), and Lymphocyte Activating 3 (LAG3) in stomach adenocarcinoma. In vitro, knockdown of CERS5 significantly hindered gastric cancer cells' ability to proliferate, migrate invade and increased apoptotic rate. We believe that CERS5 could be a promising target for future cancer research, contributing to the development of effective therapies.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Biomarcadores , Fibroblastos , Microambiente Tumoral
6.
Mol Biol Rep ; 51(1): 139, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236340

RESUMEN

BACKGROUND: Ferroptosis is involved in osteoarthritis development; however, the roles of long noncoding RNAs (lncRNAs), including lncRNA MEG3, in the regulation of ferroptosis in osteoarthritis are still unclear. METHODS: In this study, qRT‒PCR and Western blotting assays were used to detect the expression of lncRNA MEG3, miR-885-5p, SLC7A11 and GPX4; MDA and CCK-8 assays were applied to analyse cellular MDA levels and cell viability, respectively. RESULT: Erastin elevated cellular MDA levels and decreased the viability of chondrocytes and the erastin-induced decline in cell viability was reversed by a ferroptosis inhibitor (ferrostatin-1). Erastin downregulated lncRNA MEG3, SLC7A11 and GPX4 and upregulated miR-885-5p. Silencing of lncRNA MEG3 increased miR-885-5p and downregulated SLC7A11 and GPX4 and further sensitized chondrocytes to erastin-induced ferroptosis. In contrast, overexpression of lncRNA MEG3 had opposite effects. Dual luciferase assays confirmed binding between lncRNA MEG3 and miR-885-5p and between miR-885-5p and the 3'UTR of SLC7A11. In the synovial fluids from patients with osteoarthritis compared with synovial fluids from normal controls, the RNA levels of lncRNA MEG3 and SLC7A11 were decreased and the miR-885-5p expression level was increased. CONCLUSION: Our findings indicated that lncRNA MEG3 overexpression alleviated ferroptosis in chondrocytes by affecting the miR-885-5p/SLC7A11 signalling pathway.


Asunto(s)
Ferroptosis , MicroARNs , Osteoartritis , Piperazinas , ARN Largo no Codificante , Humanos , Sistema de Transporte de Aminoácidos y+/genética , Condrocitos , Ferroptosis/genética , MicroARNs/genética , Osteoartritis/genética , ARN Largo no Codificante/genética
7.
Nicotine Tob Res ; 26(4): 474-483, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-37535700

RESUMEN

INTRODUCTION: Electronic cigarettes (E-cigs) are in a controversial state. Although E-cig aerosol generally contains fewer harmful substances than smoke from burned traditional cigarettes, aerosol along with other compounds of the E-cigs may also affect lung functions and promote the development of lung-related diseases. We investigated the effects of E-cig on the pulmonary functions of male C57BL/6 mice and reveal the potential underlying mechanisms. METHODS: A total of 60 male C57BL/6 mice were randomly divided into four groups. They were exposed to fresh-air, traditional cigarette smoke, E-cig vapor with 12 mg/mL of nicotine, and E-cig with no nicotine for 8 weeks. Lung functions were evaluated by using quantitative analysis of the whole body plethysmograph, FlexiVent system, lung tissue histological and morphometric analysis, and RT-PCR analysis of mRNA expression of inflammation-related genes. In addition, the effects of nicotine and acrolein on the survival rate and DNA damage were investigated using cultured human alveolar basal epithelial cells. RESULTS: Exposure to E-cig vapor led to significant changes in lung functions and structures including the rupture of the alveolar cavity and enlarged alveolar space. The pathological changes were also accompanied by increased expression of interleukin-6 and tumor necrosis factor-α. CONCLUSIONS: The findings of the present study indicate that the safety of E-cig should be further evaluated. IMPLICATIONS: Some people currently believe that using nicotine-free E-cigs is a safe way to smoke. However, our research shows that E-cigs can cause lung damage regardless of whether they contain nicotine.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Ratones , Animales , Masculino , Humanos , Nicotina/efectos adversos , Nicotina/metabolismo , Ratones Endogámicos C57BL , Pulmón , Aerosoles/farmacología
8.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955650

RESUMEN

Depression in bipolar disorder (BD-II) is frequently misdiagnosed as unipolar depression (UD) leading to inappropriate treatment and downstream complications for many bipolar sufferers. In this study, we evaluated whether neuromelanin-MR signal and volume changes in the substantia nigra (SN) can be used as potential biomarkers to differentiate BD-II from UD. The signal intensities and volumes of the SN regions were measured, and contrast-to-noise ratio (CNR) to the decussation of the superior cerebellar peduncles were calculated and compared between healthy controls (HC), BD-II and UD subjects. Results showed that compare to HC, both BD-II and UD subjects had significantly decreased CNR and increased volume on the right and left sides. Moreover, the volume in BD-II group was significantly increased compared to UD group. The area under the receiver operating characteristic curve (AUC) for discriminating BD from HC was the largest for the Volume-L (AUC, 0.85; 95% confidence interval [CI]: 0.77, 0.93). The AUC for discriminating UD from HC was the largest for the Volume-L (AUC, 0.76; 95% CI: 0.65, 0.86). Furthermore, the AUC for discriminating BD from UD was the largest for the Volume-R (AUC, 0.73; 95% CI: 0.62, 0.84). Our findings suggest that neuromelanin-sensitive magnetic resonance imaging techniques can be used to differentiate BD-II from UD.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo , Melaninas , Humanos , Trastorno Bipolar/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Negra/diagnóstico por imagen
9.
Virus Res ; 339: 199267, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37949375

RESUMEN

EV71, a significant pathogen causing hand-foot-mouth disease, is associated with severe neurological complications such as brain stem encephalitis, aseptic meningitis, and acute flaccid paralysis. While the role of mitochondrial dynamics in regulating the replication of numerous viruses is recognized, its specific involvement in EV71 remains unclear. This study aimed to elucidate the role of mitochondrial dynamics in human neuroblastoma SK-N-SH cells during EV71 infection. Utilizing laser confocal microscopy and transmission electron microscopy, we observed that EV71 infection induced mitochondrial elongation and damage to cristae structures, concurrently accelerating mitochondrial movement. Furthermore, we identified the reduction in the expression of dynamin-related protein 1 (Drp1) and optic atrophy protein 1 (Opa1) and the increased expression of Mitofusion 2 (Mfn2) upon EV71 infection. Notably, EV71 directly stimulated the generation of mitochondrial reactive oxygen species (ROS), leading to a decline in mitochondrial membrane potential and ATP levels. Remarkably, the application of melatonin, a potent mitochondrial protector, inhibited EV71 replication by restoring Drp1 expression. These findings collectively indicate that EV71 induces alterations in mitochondrial morphology and dynamics within SK-N-SH cells, potentially impairing mitochondrial function and contributing to nervous system dysfunction. The restoration of proper mitochondrial dynamics may hold promise as a prospective approach to counteract EV71 infection.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Neuroblastoma , Humanos , Enterovirus Humano A/fisiología , Dinámicas Mitocondriales
10.
Heart Lung Circ ; 33(1): 111-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38161084

RESUMEN

OBJECTIVE: To evaluate the long-term outcomes of degenerative mitral valve (MV) repair. METHODS: This study analysed 1,069 patients who underwent MV repair due to degenerative MV disease at Beijing Anzhen Hospital from January 2010 to December 2019. All patients were clinically followed until December 2019, with an average follow-up period of 4.7 years. Perioperative complications, 30-day mortality, long-term outcomes, and risk factors of all-cause death and recurrent mitral regurgitation (MR) were summarised. RESULTS: Ten patients died in the hospital and 33 died during the follow-up period. Recurrent MR occurred in 113 patients. Fourteen patients underwent re-operation. Rates of long-term survival, absence of recurrent MR, and no re-operation were 94.0% (91.6%-96.6%), 81.2% (77.3%-85.3%), and 98.2% (97.2%-99.3%), respectively. The risk factors for long-term all-cause death included age and an ejection fraction (EF) <60%. The risk factors for recurrent MR included age, female sex, E-wave velocity, anterior prolapse, residual 1+MR postoperatively, and lower body mass index. CONCLUSIONS: Mitral valve repair is an effective treatment for degenerative MV disease that, in an experienced heart centre, can be performed with low mortality, recurrence, and re-operation rates. Advanced age and an EF <60% were risk factors for long-term all-cause death. Age, female sex, residual 1+MR postoperatively, lower body mass index, higher peak E-wave velocity, and anterior prolapse were risk factors for recurrent MR.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Insuficiencia de la Válvula Mitral , Humanos , Femenino , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/cirugía , Resultado del Tratamiento , Prolapso , Estudios Retrospectivos
11.
Expert Rev Respir Med ; 17(10): 903-917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905552

RESUMEN

INTRODUCTION: Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED: Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION: Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.


Asunto(s)
Asma , Calcio , Humanos , Calcio/metabolismo , Señalización del Calcio/fisiología , Sistema Respiratorio/metabolismo , Membrana Celular/metabolismo , Asma/metabolismo
12.
Inorg Chem ; 62(42): 17115-17125, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37828769

RESUMEN

Cu-O2 structures play important roles in bioinorganic chemistry and enzyme catalysis, where the bonding between the Cu and O2 parts serves as a fundamental research concern. Here, we performed a multiconfigurational study on the copper L2,3-edge X-ray absorption spectra (XAS) of two copper enzyme model complexes to gain a better understanding of the antibonding nature from the clearly interpreted structure-spectroscopy relation. We obtained spectra in good agreement with the experiments by using the restricted active space second-order perturbation theory (RASPT2) method, which facilitated reliable chemical analysis. Spectral feature interpretations were supported by computing the spin-orbit natural transition orbitals. All major features were assigned to be mainly from Cu 2p to antibonding orbitals between Cu 3d and O2 π*, Cu 3d-πO-O* (type A), and a few also to mixed antibonding/bonding orbitals between Cu 3d and O2 π, Cu 3d ± πO-O (type M). Our calculations provided a clear illustration of the interactions between Cu 3d and O2 π*/π orbitals that are carried in the metal L-edge XAS.

13.
Adv Sci (Weinh) ; 10(30): e2303872, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661565

RESUMEN

The lethality and chemotherapy resistance of pancreatic cancer necessitates the urgent development of innovative strategies to improve patient outcomes. To address this issue, we designed a novel drug delivery system named GDMCN2,which uses iron-based metal organic framework (Fe-MOF) nanocages encased in a covalent organic framework (COF) and modified with the pancreatic cancer-specific antibody, NRP2. After being targeted into tumor cells, GDMCN2 gradually release the sonosensitizer sinoporphyrin sodium (DVDMS) and chemotherapeutic gemcitabine (GEM) and simultaneously generated reactive oxygen species (ROS) under ultrasound (US) irradiation. This system can overcome gemcitabine resistance in pancreatic cancer and reduce its toxicity to non-targeted cells and tissues. In a mechanistic cascade, the release of ROS activates the mitochondrial transition pore (MPTP), leading to the release of Ca2+ and induction of endoplasmic reticulum (ER) stress. Therefore, microtubule-associated protein 1A/1B-light chain 3 (LC3) is activated, promoting lysosomal autophagy. This process also induces autophagy-dependent ferroptosis, aided by the upregulation of Nuclear Receptor Coactivator 4 (NCOA4). This mechanism increases the sensitivity of pancreatic cancer cells to chemotherapeutic drugs and increases mitochondrial and DNA damage. The findings demonstrate the potential of GDMCN2 nanocages as a new avenue for the development of cancer therapeutics.


Asunto(s)
Ferroptosis , Estructuras Metalorgánicas , Neoplasias Pancreáticas , Humanos , Estructuras Metalorgánicas/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Anticuerpos Monoclonales/uso terapéutico , Autofagia , Gemcitabina , Neoplasias Pancreáticas/tratamiento farmacológico , Retículo Endoplásmico/metabolismo , Neoplasias Pancreáticas
14.
Proc Biol Sci ; 290(2007): 20231333, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37727088

RESUMEN

Many fossil insects show monochromatic colour patterns that may provide valuable insights into ancient insect behaviour and ecology. Whether these patterns reflect original pigmentary coloration is, however, unknown, and their formation mechanism has not been investigated. Here, we performed thermal maturation experiments on extant beetles with melanin-based colour patterns. Scanning electron microscopy reveals that melanin-rich cuticle is more resistant to degradation than melanin-poor cuticle: with progressive maturation, melanin-poor cuticle regions experience preferential thinning and loss, yet melanin-rich cuticle remains. Comparative analysis of fossil insects with monotonal colour patterns confirms that the variations in tone correspond to variations in preserved cuticle thickness. These preserved colour patterns can thus be plausibly explained as melanin-based patterning. Recognition of melanin-based colour patterns in fossil insects opens new avenues for interpreting the evolution of insect coloration and behaviour through deep time.


Asunto(s)
Escarabajos , Fósiles , Animales , Color , Melaninas , Insectos
15.
Int J Nanomedicine ; 18: 5225-5241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727651

RESUMEN

Purpose: Hydrogels containing the nano-self-assembling peptide RADA16-I (Nanogels) were utilized as scaffolds to establish airway organoids and an adenovirus-infected model. The results support in vitro adenovirus studies, including isolation and culture, pathogenesis research, and antiviral drug screening. Methods: HSAEC1-KT, HuLEC-5a and HELF cells were cocultured in RADA16-I hydrogel scaffolds to construct an airway organoid model. Adenovirus was used to infect this model for adenovirus-related studies. The morphological characteristics and the proliferation and activity of airway organoids before and after adenovirus infection were evaluated. The expression of the airway organoid marker proteins CC10, KRT8, AQP5, SPC, VIM and CD31 was detected. TEM and qPCR were used to detect adenovirus proliferation in airway organoids. Results: HSAEC1-KT, HuLEC-5a and HELF cells cocultured at 10:7:2 self-assembled into airway organoids and maintained long-term proliferation in a RADA16-I hydrogel 3D culture system. The organoids stably expressed the lumen-forming protein KRT8 and the terminal airway markers AQP5 and SPC. Adenoviruses maintained long-term proliferation in this model. Conclusion: An airway-organoid model of adenovirus infection was constructed in vitro from three human lung-derived cell lines on RADA16-I hydrogels. The model has potential as a novel research tool for adenovirus isolation and culture, pathogenesis research, and antiviral drug screening.


Asunto(s)
Infecciones por Adenoviridae , Péptidos , Humanos , Péptidos/farmacología , Adenoviridae/genética , Organoides , Antivirales , Hidrogeles
16.
Aging (Albany NY) ; 15(16): 8113-8136, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595258

RESUMEN

OBJECTIVE: Pyroptosis is a form of programmed cell death that is essential for immunity. Herein, this study was conducted to uncover the implication of pyroptosis in immunomodulation and tumor microenvironment (TME) in gastric cancer. METHODS: Prognostic pyroptosis-related genes were extracted to identify different pyroptosis phenotypes and pyroptosis genomic phenotypes via unsupervised clustering analysis in the gastric cancer meta-cohort cohort (GSE15459, GSE62254, GSE84437, GSE26253 and TCGA-STAD). The activation of hallmark gene sets was quantified by GSVA and immune cell infiltration was estimated via ssGSEA and CIBERSORT. Through PCA algorithm, pyroptosis score was conducted. The predictors of immune response (TMB and IPS) and genetic mutations were evaluated. The efficacy of pyroptosis score in predicting immune response was verified in two anti-PD-1 therapy cohorts. RESULTS: Three different pyroptosis phenotypes with different prognosis, biological pathways and tumor immune microenvironment were established among 1275 gastric cancer patients, corresponding to three immune phenotypes: immune-inflamed, immune-desert, and immune-excluded. According to the pyroptosis score, patients were separated into high and low pyroptosis score groups. Low pyroptosis score indicated favorable survival outcomes, enhanced immune responses, and increased mutation frequency. Moreover, low pyroptosis score patients displayed more clinical benefits from anti-PD-1 and prolonged survival time. CONCLUSION: Our findings uncovered a nonnegligible role of pyroptosis in immunomodulation and TME multiformity and complicacy in gastric cancer. Quantifying the pyroptosis score in individual tumors may tailor more effective immunotherapeutic strategies.


Asunto(s)
Neoplasias Gástricas , Humanos , Piroptosis , Inmunoterapia , Inmunomodulación , Fenotipo , Microambiente Tumoral
17.
Nat Ecol Evol ; 7(7): 1131-1140, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308704

RESUMEN

The amniotic egg with its complex fetal membranes was a key innovation in vertebrate evolution that enabled the great diversification of reptiles, birds and mammals. It is debated whether these fetal membranes evolved in eggs on land as an adaptation to the terrestrial environment or to control antagonistic fetal-maternal interaction in association with extended embryo retention (EER). Here we report an oviparous choristodere from the Lower Cretaceous period of northeast China. The ossification sequence of the embryo confirms that choristoderes are basal archosauromorphs. The discovery of oviparity in this assumed viviparous extinct clade, together with existing evidence, suggests that EER was the primitive reproductive mode in basal archosauromorphs. Phylogenetic comparative analyses on extant and extinct amniotes suggest that the first amniote displayed EER (including viviparity).


Asunto(s)
Lagartos , Animales , Filogenia , Viviparidad de Animales no Mamíferos , Reproducción , Mamíferos
20.
Micromachines (Basel) ; 14(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37241600

RESUMEN

In this paper, we propose a classification algorithm of EEG signal based on canonical correlation analysis (CCA) and integrated with adaptive filtering. It can enhance the detection of steady-state visual evoked potentials (SSVEPs) in a brain-computer interface (BCI) speller. An adaptive filter is employed in front of the CCA algorithm to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. The ensemble method is developed to integrate recursive least squares (RLS) adaptive filter corresponding to multiple stimulation frequencies. The method is tested by the SSVEP signal recorded from six targets by actual experiment and the EEG in a public SSVEP dataset of 40 targets from Tsinghua University. The accuracy rates of the CCA method and the CCA-based integrated RLS filter algorithm (RLS-CCA method) are compared. Experiment results show that the proposed RLS-CCA-based method significantly improves the classification accuracy compared with the pure CCA method. Especially when the number of EEG leads is low (three occipital electrodes and five non occipital electrodes), its advantage is more significant, and accuracy reaches 91.23%, which is more suitable for wearable environments where high-density EEG is not easy to collect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...